
J. Fluid Mech. (1997), �ol. 349, pp. 1–30. Printed in the United Kingdom

# 1997 Cambridge University Press

1

Lateral straining of turbulent boundary layers.
Part 2. Streamline convergence

By N. R. PANCHAPAKESAN,1 T. B. NICKELS,1

P. N. JOUBERT1  A. J. SMITS2

"Department of Mechanical Engineering, University of Melbourne, Parkville 3052, Australia

#Department of Mechanical and Aerospace Engineering, Princeton University, Princeton,
New Jersey, USA

(Received 10 October 1996 and in revised form 14 March 1997)

Experimental measurements are presented showing the effects of streamline con-
vergence on developing turbulent boundary layers. The longitudinal pressure-gradient
in these experiments is nominally zero so the only extra rate-of-strain is the lateral
convergence. Measurements have been made of mean flow and turbulence quantities
at two different Reynolds numbers. The results show that convergence leads to a
significant reduction in the skin-friction and an increase in the boundary layer
thickness. There are also large changes in the Reynolds stresses with reductions
occurring in the inner region and some increase in the outer flow. This is in contrast
to the results of Saddoughi & Joubert (1991) for a diverging flow of the same included
angle and zero pressure-gradient which show much smaller changes in the stresses and
an approach to equilibrium. A new non-dimensional parameter, β

D
, is proposed to

characterize the local effect of the convergence and it is shown how this parameter is
related to Clauser’s pressure-gradient parameter, β

x
. It is suggested that this is an

equilibrium parameter for turbulent boundary layers with lateral straining. In the
present flow case β

D
increases rapidly with streamwise distance leading to a significant

departure from equilibrium. Measurement of terms in the transport equations suggest
that streamline convergence leads to a reduction in production and generation and
large increases in mean advection. The recovery of the flow after the removal of
convergence has been shown to be characterized by a significant increase in the
turbulent transport of shear-stress and turbulent kinetic energy from the very near-wall
region to the flow further out where the stresses have been depleted by convergence.

1. Introduction

This paper is the second part of a study on the effects of lateral straining on the
development of turbulent boundary layers. The results of the first part, which
considered the effects of streamline divergence, were reported by Saddoughi & Joubert
(1991) (hereinafter referred to as (I)). Here, in the second part, we consider the effects
of streamline convergence and attempt to draw together previous work on lateral
straining in a comprehensive framework.

In the usual boundary-layer notation, the principal strain rate is ¥U}¥y and the
additional lateral strain rate is ¥W}¥z, which is positive for divergence and negative for
convergence. Bradshaw (1973) described flows as being ‘mildly’ perturbed when the
magnitude of the ratio B¯ (¥W}¥z)}(¥U}¥y) is less than 0±1. When this ratio (which
might be called the ‘Bradshaw’ parameter) exceeded 0±1, the flow was described as
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being ‘strongly’ perturbed. As indicated in (I), very little experimental work has been
performed in flows with ‘simple’ lateral straining, that is, lateral straining in the
absence of other extra rates-of-strain (e.g. pressure gradients). For simple diverging
flows, only the experiments by Sjolander (1980) on a source flow on a flat plate, and
Smits, Eaton & Bradshaw (1979a) on a cone flow had been performed by the time (I)
appeared in 1991. For simple converging flows no data were available at the time.

Since the publication of (I), preliminary results on the effect of strong convergence
on a flat plate sink flow were reported by Saddoughi, Hafez & Joubert (1991) and
Hafez & Joubert (1992) and a study of the effects of mild convergence and divergence
in a flat plate sink}source flow was presented by Pompeo, Bettelini & Thomann (1993).
All these experiments were performed on the (lateral) centreline where streamline
lateral and longitudinal curvature effects were small with only very weak pressure
gradients so that the effects of lateral strain could be clearly identified. The work by
Saddoughi et al. and Hafez & Joubert was preliminary to the current study, and will
be discussed in the context of the new results presented here. Pompeo et al. used a
potential flow method to design a reversible test section with a constant free-stream
velocity that was converging when the flow was in one direction and diverging when
the flow was in the opposite direction. The incoming boundary layer had a Reynolds
number based on momentum thickness (Rθ) of about 4800, the maximum values of B
(in the middle of the layer) were about ®0±22 and ­0±1, and the skin friction
coefficients changed by about ®25% and ­12% over the length where ¥W}¥z was
non-zero. The studies by Saddoughi et al. and Hafez & Joubert, as well as the one
presented here, were performed with initial values of Rθ at the start of convergence of
about 2300 (U

"
¯ 8 m s−") and 5000 (U

"
¯ 20 m s−"). The maximum values of B (in the

middle of the layer) were about ®0±29 and ®0±24, respectively, and the skin friction
coefficients decreased by about 40% for both Reynolds numbers.

The similarity parameter B, formed by the ratio of the extra strain rate to the
principal strain is a local parameter, and does not provide a measure of how long the
extra strain rate acts. An impulsive application of the extra strain rate e is more
accurately measured by the integral of the strain rate over the time it acts (Smits,
Young & Bradshaw 1979b), I¯ ! edt. For prolonged application of the extra strain
rate, it is not so clear what parameter is important, especially when the level of the
strain rate varies with streamwise distance, as is often the case for converging and
diverging flows. In these cases, the integral definition I

d
¯ !(¥W}¥z) dt may still be

useful.
Other measures can also be developed. In boundary layers with pressure gradients,

Clauser defined a parameter β
x

and showed that if this parameter is held constant it is
possible to achieve a type of equilibrium state for boundary layers with pressure
gradients acting which we shall refer to here as approximate-equilibrium flow. In these
flows velocity-defect similarity is achieved and approximate similarity of the turbulent
stresses is also possible. These flows are not true equilibrium flows, since, unless the
local Reynolds number of the flow is also kept constant, it is not possible to have
equilibrium for the viscous terms simultaneously. This exact equilibrium is theoretically
possible in a sink-flow which may occur for a two-dimensional boundary layer in a
favourable pressure gradient where the streamlines converge linearly to a point which
is considered to be a two-dimensional sink.

In flows with lateral convergence or divergence it is possible to extend this approach
by defining an equivalent parameter β

D
which is a useful measure of the effect of

convergence or divergence and is defined in terms of integral properties of the
boundary layer which makes the evaluation of this parameter more accurate than
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terms like (dW}dz)}(dU}dy). The importance and relevance of this parameter to
boundary layers with lateral convergence and divergence is discussed in this paper with
particular attention paid to the possibility of equilibrium flows in which this parameter
is held constant.

2. Apparatus and measurement techniques

A brief description of the experimental arrangement is given here. A more detailed
description of the wind-tunnel construction may be found in (I) and in Saddoughi
(1988). Details of the converging section may be found in Saddoughi et al. (1991) and
in Hafez & Joubert (1992).

A schematic of the test section is shown in figure 1. A parallel section of rectangular
cross-section was attached to the downstream end of the wind tunnel contraction. A
trip wire of 0±5 mm nominal diameter was placed at the beginning of this section to
cause transition and the turbulent boundary layer was allowed to develop for a
distance of 1960 mm. This parallel section was followed by a section of 835 mm in
length where the two sidewalls converged with a total included angle of 20°. The
coordinate system was chosen so that x¯ 0 corresponds to the beginning of the
converging section. A zero pressure gradient was maintained in the converging section
by diverging the wall opposite the plane measurement wall to compensate for the
acceleration of the flow caused by convergence. In addition to this it was found
necessary to include bleeding slots at the beginning and end of the converging section
to ensure zero pressure gradient over the whole of the flow. Following the converging
section, a further parallel section was added with a length of 1125 mm, after which the
air passed to atmosphere. In this experiment, therefore, a developed zero pressure
gradient turbulent boundary layer was subjected to a simple strong lateral convergence,
then allowed to recover in a further parallel section while a nominally zero pressure
gradient was maintained over the whole flow. In figure 2 the variations of C

p
and

dC
p
}dx over the working section are plotted and it is shown that the pressure gradient

is very small over the whole flow. The convergence (divergence) parameter calculated
from the geometry of the flow is

D¯
1

x®x
!

, (1)

where x
!

is the effective origin of the converging walls and is 1730 mm for both
Reynolds numbers. The divergence parameter in this flow case varies from ®0±578 m−"

to ®1±12 m−". The variation of the spanwise strain rate divided by the mean velocity
gradient at y}δ¯ 0±5 (the ‘Bradshaw parameter ’, B) is shown in figure 3. Since
rBr" 0±1, the flow is considered to be strongly perturbed.

Measurements were made at two Reynolds numbers corresponding to nominal free-
stream velocities of 8 m s−" and 20 m s−". The free-stream turbulence intensity was of
the order of 0±3% for 8 m s−" and 0±35% for 20 m s−".

Mean flow measurements were made with a Pitot-tube of 0±73 mm diameter attached
to a Gould Datametrics electronic manometer type 1014A with a Barocel pressure
sensor type 572D-10W-2E3V1. Turbulence quantities were measured with cross-wire
probes with platinum sensors of 5 µm diameter and 1 mm length. The sensors were
arranged nominally at ³45° and the probes were dynamically matched and calibrated
using the technique developed and described by Perry (1982). The probes were
connected to in-house-built hot-wire anemometers with frequency responses in excess
of 25 kHz and run at an overheat ratio of two. The dynamic calibration technique also
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F 1. Schematic diagram of the experimental arrangement. (a) Elevation. (b) Plan.
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provided a further test of the two-component calibration since an accurately known
Reynolds stress could be imposed on the probe and compared to the measured value.
Measurements were digitized using a twelve-bit data acquisition board with
simultaneous sample and hold installed in a 486 PC. Checks on the calibration showed
the measured values to be within ³2% of the actual stresses and the mean velocity to
be within ³0±5%. The streamwise skin friction measurements were made using a
Preston tube of 1±05 mm diameter. The wall shear velocity used to non-dimensionalize
the turbulence quantities was evaluated from the mean velocity profiles using a Clauser
chart with the constants κ¯ 0±41 and A¯ 5±2 in the log–law formulation.

2.1. Initial flow

The experimental apparatus as described has an initial zero pressure-gradient section.
The reason for this is that the local effect of convergence is related to the ratio of the
convergence (dW}dz) to the normal-to-the-wall gradient (dU}dy). The longer the
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F 4. Comparison of mean velocity profile before convergence with data of Erm & Joubert
(1991) at a similar Rθ. D, Erm & Joubert Rθ ¯ 2226; *, present case Rθ ¯ 2320.

boundary layer is allowed to develop before convergence the smaller the normal-to-
the-wall gradients will be. This leads to a greater effect for a fixed magnitude of
convergence.

To establish that the flow before convergence was a standard two-dimensional zero
pressure-gradient boundary layer, measurements were made at a station 250 mm
before the start of the converging section (x¯®250 mm). At the lower of the two
velocities tested (8 m s−") the Reynolds number (based on momentum thickness) was
comparable to the zero pressure-gradient measurements of Erm & Joubert (1991). The
comparisons shown in figures 4 and 5 indicate a good agreement of the mean velocity
profile and the Reynolds shear stress given the difference in Rθ and it appears that the
boundary layer before convergence is indeed a standard two-dimensional zero
pressure-gradient layer. The local skin friction coefficient (C !

f
) is defined by

C !
f
¯ 2τ

!
}ρU #

"
, (2)
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where τ
!
is the wall shear stress, ρ is the air density and U

"
is the free-stream velocity

(i.e. the streamwise velocity outside the boundary layer). The variation of the local skin
friction coefficient in the spanwise direction is shown in figure 6 for the 20 m s−" case.
On this figure C !

fm
is the value of C !

f
on the tunnel centreline. Measurements are shown

only for this case since the results should be more accurate than the 8 m s−" case owing
to the larger dynamic head. The results should be independent of Reynolds number
since they essentially depend only on the geometry of the apparatus. The variation near
the centreline is small suggesting that the mean flow is nominally two dimensional.
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F 7. Centreline mean velocity plots, top 20 m s−", bottom 8 m s−". Plots on left-hand side
show inlet and converging flow. Plots on right-hand side show recovery region.

3. Mean flow measurements

The mean velocity profiles are shown in figure 7. All the profiles show logarithmic
regions with a wake component that increases in the converging section. Also shown
on these plots is the logarithmic profile given by

U

Uτ

¯
1

0±41
ln

yUτ

ν
­5±2, (3)

where Uτ ¯ (τ
!
}ρ)"/#. It appears from these plots that, apart from the increase in the

wake, the shape of these profiles is not very different from boundary-layer profiles in
the absence of convergence.

3.1. Streamwise de�elopment

Figure 8 shows the variation of Coles wake parameter with streamwise distance. The
variation seems to be approximately independent of Reynolds number except for a
vertical shift. The rate-of-change of Π is virtually unchanged in the converging section,
although some difference between the two cases occurs in the recovery section.

The variation of C !
f
with streamwise distance for both cases is shown in figure 9. Also

shown are calculations for a two-dimensional zero pressure-gradient layer (i.e. a
boundary without streamline convergence) using the method of von Ka! rma! n (1932).
The skin friction in the region of convergence drops much more rapidly with streamwise
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distance than the flow without convergence but seems to ‘flatten out ’ in the recovery
section (x" 790 mm). An interesting point is that the shape of the two experimental
curves is nearly identical apart from a vertical shift. It appears that the rate-of-change
of the skin-friction with streamwise distance in the converging section does not appear
to change significantly with the change in Reynolds number in this experiment.

The variation of the integral parameters of the boundary layer is shown in figure 10.
Also shown on these plots is the variation for a zero pressure-gradient boundary layer
as measured by Erm & Joubert (1991) for a free-stream velocity of 8 m s−" and the same
virtual origin. These results are directly comparable with those for the lower of the two
Reynolds numbers examined here. The values for all the integral parameters are very
close to those of Erm & Joubert (1991) before the start of the converging section, as
would be expected. The plots show a rapid increase of the boundary-layer thickness (in
both θ and δ) that leads to an increase in Rθ. Of particular interest is the shape factor
which appears to be approximately constant over the region of convergence and
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independent of Reynolds number, even though the mean velocity profiles are changing
shape. This is also seen in the results of Saddoughi & Joubert (1991) for the case of
divergence. It seems then that the effect of convergence or divergence on the shape
parameter is not large in comparison to that observed in flows with pressure gradients.
A nearly constant shape factor was also observed by Pompeo et al. (1993), although
they state that the shape factor was increased slightly by convergence and decreased
slightly by divergence. Their plots show a 3±5% increase for the converging flow and
a 1±5% decrease for the diverging flow.

4. A parameter to characterize convergence and divergence

The behaviour of the mean velocity profiles and the wake parameter is similar to that
observed in adverse pressure-gradient flows. In fact, in the absence of other
information, it would be difficult to tell from these mean velocity plots whether this was
an adverse pressure-gradient flow or a converging flow. This is not surprising since a
consideration of the continuity equation for both flows shows that both extra strains
applied separately are equivalent to dV

"
}dy, i.e. the gradient of the mean normal to the

wall velocity component in the free stream.

dU
"

dx
¯®

dV
"

dy
(4)

for a two-dimensional adverse or favourable pressure-gradient flow and

dW
"

dz
¯®

dV
"

dy
(5)
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for a converging or diverging zero pressure-gradient flow (the subscript ‘1 ’ refers to
conditions outside the boundary layer).

A significant advance in the understanding of boundary layers with pressure
gradients was made by Clauser (1954) who pointed out that an appropriate parameter
to characterize the pressure gradient could be defined by considering the forces on a
fluid element. He defined a parameter β

x
as

β
x
¯

δ*

τ
!

dP

dx
¯®

δ*

Uτ

S
dU

"

dx
¯

δ*

Uτ

S
dV

"

dy
, (6)

where S¯U
"
}Uτ and (4) has been used. Although Clauser (1954) originally derived

this parameter by considering the ratio of skin-friction force to pressure-gradient force
it can also be considered to be a ratio of the extra rate-of-strain due to the pressure-
gradient to the primary rate-of-strain of the boundary layer.

It is possible to extend this idea to flows with lateral streamline convergence or
divergence by noting the equivalence given by (5) and defining an equilibrium
parameter β

D
by

β
D

¯®δ*S #
1

U
"

dW
"

dz
¯®δ*S #D, (7)

where D is the ‘divergence’ parameter defined earlier and for simple divergence (i.e. not
varying through the layer) which is the present case then D¯ (1}U

"
) dW

"
}dz. Thus β

D

is effectively a measure of the divergence of the streamlines in the outer flow in a
centreline plane.

Physically, β
D

can be interpreted as either a ratio of the extra rate-of-strain due to
streamline convergence (or divergence) to the principal rate-of-strain, ¥U}¥y, or as a
ratio of the timescale of the large eddies in the flow (δ}Uτ) to the timescale of the extra
rate-of-strain (1}(dW}dz)). If an extra rate-of-strain is added to (or removed from) an
existing boundary layer then this ratio gives an indication of the time it will take for
the boundary layer to adjust to the new condition. One advantage of this definition
over the Bradshaw parameter, B, defined earlier is that it is defined in terms of integral
properties of the boundary layer which may be measured more accurately than local
gradients.

The variation of β
D

is shown in figure 11. It may be noted that the difference between
the two Reynolds numbers is small. Also shown on this figure are the values of β

D

calculated for the converging flow of Pompeo et al. (1993) and for the diverging flow
of Saddoughi & Joubert (1991). The magnitude of β

D
in the present experiment is much

larger than in the other experiments and the rate of change of β
D

with x is also large.
A further point to note from the figure is that, in the diverging flow, the change in β

D

is small over the whole flow and at large x it becomes approximately constant. It is
reasonable to suggest that if β

D
is kept constant in this flow it may be possible to

achieve an equilibrium layer in the same way that pressure-gradient flows with constant
β
x

can achieve equilibrium (or at least a close-to-equilibrium state). The results of
Saddoughi & Joubert (1991) show very little change in the non-dimensional stresses,
particularly at large x and also the value of Cole’s wake factor, Π, becomes constant
suggesting that this flow (with approximately constant β

D
) is close to equilibrium. The

authors state that beyond xE 35δ
!

(where δ
!

is the initial boundary-layer thickness)
that ‘apparently…the boundary layer had reached a state of equilibrium’. The
conditions required for equilibrium can be derived and used to show that an
approximate-equilibrium boundary layer is possible for turbulent boundary layers with
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simple linear divergence if the parameter β
D

is held constant. It can be further shown
that exact equilibrium is possible if β

D
}H¯®1 where H is the shape factor (for a

detailed discussion of these conditions see Nickels & Joubert 1997). In the present case
with simple linear convergence and zero pressure-gradient, it can also be shown that
equilibrium (either approximate or exact) is not possible since it is not possible to keep
β
D

constant. Since the definition of β
x

in two-dimensional boundary layers with
pressure gradients is equivalent to β

D
in a flow with zero pressure gradient the

relationship of Π versus β (where β represents β
x

or β
D

where appropriate) is shown
in figure 12 compared with the adverse pressure-gradient results of East, Sawyer &
Nash (1979) for equilibrium layers. Also shown on this figure is the curve-fit of Das
(1987) which has been found by curve-fitting a large amount of data. The results for
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F 13. Reynolds stresses 20 m s−" case in converging region.

the diverging flow of Saddoughi & Joubert (1991) are close to this curve and seem to
approach it more closely at large streamwise distances (as β

D
becomes constant). The

results for the converging flow are far from this curve with the difference increasing
with streamwise distance which may well be due to the fact that the flow is far from
equilibrium since dβ}dx is large.

5. Reynolds stresses

In this section the turbulence quantities presented are for the 20 m s−" flow case. The
behaviour of all the quantities is very nearly the same for the 8 m s−" and 20 m s−" flow
cases. The data for the 8 m s−" flow case is available from the authors.

The behaviour of the turbulence intensities, shear stresses and the turbulent kinetic
energy is shown in figures 13–15. Some main points may be noted. In the converging
section all components show a reduction in the inner region corresponding
approximately to 0±1! y}δ! 0±4. There also appears to be an overall increase in the
normal components in the outer region, although the trend is not monotonic with some
reduction in the outer region occurring initially. While the streamwise component (u#)
and the Reynolds shear stress show the maximum overall reduction, it is the profile of
the spanwise component (w#) that shows the most significant change in shape
corresponding to a large increase in the outer region, coupled with a reduction in the
inner part. All components develop an approximately ‘flat ’ region in the inner flow by
the end of the convergence.

In the recovery region the trends are less obvious, but all components seem to exhibit
a reduction in the length of the ‘flat ’ region with streamwise distance. This appears to
be dominated by a relative increase in the quantities toward the wall although there is
also some decrease in the outer flow.
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The trends in the turbulent kinetic energy reflect the changes in the individual
components and hence exhibit the same overall trends.

6. Transport of kinetic energy and shear-stress

In order to gain some insight into the behaviour of the flow subjected to convergence
the transport equations for shear stress and turbulent kinetic energy may be examined.
They may be written in the following forms,
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for the Reynolds shear stress, and
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for the turbulent kinetic energy, where η¯ y}δ and
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is the defect profile and
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The labelled terms in (8) are A, transport by mean-flow; B, generation; C, transport
by velocity fluctuations; D, redistribution by pressure fluctuations. In (9) they are E,
advection by the mean flow; F, production; G, diffusion by velocity fluctuations; H,
dissipation.

In the Reynolds shear-stress equation the transport and redistribution due to viscous
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forces have been neglected, as has the transport by pressure fluctuations, although the
redistribution due to pressure fluctuations has been retained. In the energy equation,
the pressure diffusion term has been neglected and it was assumed that uw#¯ "

#
(u#�­�$).

These approximations have been discussed by Bradshaw (1967) and Lawn (1971). In
the form presented here, these equations show directly the effect of the various terms
on the rate of change of the quantities (q# and ®u�) with respect to streamwise
distance.

Inspection of the first equation suggests that convergence leads to a reduction in the
generation of shear stress and an increase in the advection of the shear stress away from
the wall since β

D
occurs explicitly in these two terms. In the second equation, the

advection is also increased and it would appear that the production is also increased
by the extra term containing β

D
. It should be noted, however, that the production also

depends directly on the value of the Reynolds shear stress and hence depends on the
changes in shear stress which result from the transport in the first equation. Similarly,
the rate of generation of Reynolds shear stress depends on �# which is related to the
magnitude of the turbulent kinetic energy. In the following sections the effects of
convergence on the terms in equations (8) and (9) are discussed. The abscissa of each
plot is labelled with the letter that corresponds to the appropriate term in the above
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equations. Each term has been divided by δ(S®f ) so they can be considered to be the
contributions of the various processes to ¥(q#}U #

τ)}¥x and ¥(®u�}U #
τ)}¥x. All terms

except D and H have been measured directly.

6.1. Production and generation

As has been stated above, the convergence parameter, β
D
, explicitly affects the

production and generation terms, as well as increasing the mean advection of these
quantities. The changes in these terms are the direct effects of convergence on the
turbulence quantities. Figure 16 shows the changes in the production and generation
terms in the converging section. Overall, the effect of convergence is to reduce the
magnitude of both these terms. In the recovery section shown in figure 17 the changes
are much smaller. There is no obvious recovery in the production suggesting that if this
is occurring it is a slow process. In order for the production (and generation) to
increase to the value before convergence it is necessary for the stresses to recover and
this recovery depends on the timescale of the large eddies in the boundary layer.
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6.2. Ad�ection by the mean flow

The changes in the advection of both shear stress and turbulent kinetic energy due to
convergence are quite marked as shown in figure 18. Both show a large increase in the
outer region of the flow as soon as convergence is applied. The peak gain due to
advection moves away from the wall with streamwise distance. The reason for this
behaviour may be understood from the transport equations. The explicit term
containing β

D
in both equations depends on the normal-to-the-wall gradient multiplied

by the non-dimensional distance from the wall (η¥}¥η). This leads to an increase in the
outer part of the flow which reduces the gradients in the inner region. Hence the
position of the maximum gradient moves away from the wall. This process aids in the
formation of the ‘flat ’ region in the stresses discussed above.

In the recovery section the advection is substantially reduced and appears to become
slightly negative, as shown in figure 19. The negative value probably arises because of
the inaccuracy in the measurement of the streamwise gradients and may not be
significant. The overall reduction is, however, a real, and direct, consequence of the
removal of the extra rate of strain.
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6.3. Turbulent transport and diffusion

The turbulent transport and diffusions terms correspond to the transport of the
appropriate quantity by the velocity fluctuations. The results are shown in figures 20
and 21. The turbulent transport or diffusion may be considered to be a response of the
boundary layer to the changes caused by convergence. In the converging region there
is a gradual increase in this transport in the inner region and a reduction in the outer
region. These trends are opposite to those observed for the advection. It is worth
noting that the increase in the inner region does not occur immediately the convergence
is applied (in fact there appears to be a small reduction in the transport of kinetic
energy at the first station). The changes are much less dramatic than the changes in
advection. It appears then that the boundary layer responds to the increased advection
and reduced production by reducing the gain due to turbulent transport or diffusion
in the outer region and reducing the loss due to turbulent transport in the inner
region. The timescale of this response depends on the timescale of the large eddies
and hence there is a time-lag between the external changes and the changes in turbulent
transport.

In the recovery region there is a distinct change in the behaviour of the transport
near the wall. The transport terms for both shear stress and turbulent kinetic energy
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show a rapid reduction near the wall leading to a sharp negative peak (loss) around
η¯ 0±05 followed by a positive peak (gain) further out at around η¯ 0±13. This
indicates a significant transfer from the very near-wall region to the region further out
where the stresses have been depleted. This is a definite indication of the recovery
process and explains the observation that the beginning of the ‘flat ’ region in the
stresses moves out from the wall during recovery. The transport in the outer flow also
shows a negative region around 0±5! η! 0±6 followed by a positive region further out.
This difference indicates transfer away from the wall and this transport is seen to
reduce with streamwise distance in the recovery region.

6.4. Dissipation and redistribution

These two terms may be considered to be the ‘sink’ terms in the transport equations
in that both terms are negative across the layer and hence tend to reduce the
transported quantities. The dissipation of the turbulent kinetic energy could not be
measured in the present experiment although it can be found by difference using the
transport equations. The accuracy of this procedure depends on the importance of the
terms that have been neglected in the equations and so the results are not plotted. It
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is possible, however, to make some comments on the behaviour by comparing the
behaviour of the other terms. Inspection of the preceding plots suggests that in the
inner region the sum of the other measured terms is positive and since the energy is
reduced the dissipation (which is negative) must be larger than this sum. In the outer
region there is a net gain and hence the dissipation is less than the contributions of the
other terms. It may be suggested then that the effect of increasing convergence is to
transport energy to the outer flow at a rate which exceeds that of the changes in
dissipation and turbulent diffusion. This leads to an imbalance which results in a loss
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in the inner region and a gain in the outer region. In the Reynolds shear stress there
is a definite reduction near the wall but no corresponding increase in the outer flow.
This suggests the redistribution due to pressure fluctuation balances the gain due to the
extra transport in the outer flow but exceeds the contributions due to the other
transport terms in the inner region. By implication the redistribution appears to
respond more quickly to the changes in the outer flow than in the inner flow.

6.5. Reco�ery

The results presented show that the recovery of the boundary layer after removal of the
convergence is slow. A simple, if crude, estimate of the recovery distance can be made
by noting that δ}Uτ is an estimate of the timescale of the boundary layer. Moving in
a frame of reference with the free stream gives an estimate of the time ‘elapsed’ for the
flow as x}U

"
. Recovery then requires that these two timescales be equal (or at least

of something like the same order). This leads to a recovery distance of

0xδ1
recov

ES¯U
"
}Uτ. (13)

In the present experiment at the end of the converging section SE 28 for the 8 m s−"

case and hence recovery will need a distance of order 28δ which for this case is about
2±8 m. In the 20 m s−" case SE 31 and so there is little increase (about 10%) in the
length required for recovery. This same estimate can also be arrived at by considering
the time necessary for the production of kinetic energy equivalent to the kinetic energy
of the boundary layer at the end of the converging section.
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6.6. The net effect of prolonged con�ergence

In order to assess the overall effect of convergence on the turbulent kinetic energy and
Reynolds shear stress the first and last measurement stations are examined in this
section.

Figure 22 shows the change in kinetic energy of the fluid in the boundary layer
between the station in the section before convergence and the last station measured in
the converging section. Also shown on this plot are the integrals of the two profiles
which show that the total area under the two profiles is the same. The net effect of the
prolonged convergence in this experiment has been to redistribute the turbulent kinetic
energy from near the wall to the outer flow even when the change in Uτ is taken into
account. It should be pointed out that the close coincidence of the two areas also occurs
for the 8 m s−" case but does not apply at every station throughout the converging
section.

The situation is different for the Reynolds shear stress (figure 23). The net effect
appears to be a substantial reduction in the inner region but little, if any, increase in
the outer part of the flow. The area under the profile is obviously reduced so the
integrals are not plotted for this case.

7. Derived quantities

In this section several parameters of particular relevance to turbulence modelling are
presented.
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7.1. Structure parameters

The effects of the convergence on the structure of the turbulent boundary layer can be
examined by considering the structure parameters. Two important parameters are
shown here. The first is R

uv
¯®u�}(u#�#)"/# which may be considered to be a measure

of the efficiency of turbulent mixing. The second is ®u�}q# which represents the
efficiency of maintenance of the shear stress (Smits et al. 1979a) and is sometimes used
as an empirical input to calculation methods. The results shown in figures 24 and 25
suggest that the effect of convergence on the structure parameters is not large, although
there is an initial large decrease in both parameters in the converging region which then
appears to settle to a reasonably constant value. In the recovery section the results
show, at first, a significant increase, followed by a reduction that leads to profiles which
are similar to those at the end of convergence (apart from a small increase in the outer
flow).

7.2. Turbulent transport �elocity

Two other quantities of interest are the transport velocities of turbulent kinetic energy
and shear stress. These parameters were suggested by Bradshaw, Ferriss & Atwell
(1967) and Bradshaw (1972) as representing the transport of the turbulent kinetic
energy and shear stress by convection due to the large eddies of the flow. This definition
depends on the large eddies being weak (Bradshaw 1972) and the neglect of the
transport by pressure fluctuations. The transport velocities are V

q
¯ q#�}q# for the

turbulent kinetic energy and V
t
¯ u�#}u� for the Reynolds shear stress. The results

given in figures 26 and 27 show a significant reduction of the transport velocity of both
kinetic energy and shear stress in the inner region in the converging section which
suggests a reduction in the rate at which these quantities are transported away from the
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wall where they are generated. There is also a marked decrease in the outer region in
response to the increased advection.

The behaviour in the recovery region reflects the comments made already concerning
the full turbulent transport term. There is a distinct increase in the transport velocity
near the wall which leads to an increase in the stresses in the inner region where they
have been most depleted by the convergence.

7.3. Reynolds stress ratios

Figures 28 and 29 show the ratios of the stresses, sometimes called ‘ isotropy ratios ’.
In the converging region the results for both Reynolds numbers show an increase in the
normal-to-the-wall stress ratio (�#}u#) in the inner part of the layer and a decrease in
the outer part of the layer. The spanwise stress ratio (w#}u#) shows a large overall
increase across the layer which is greater in the inner part of the layer. In the recovery
region the changes in the Reynolds stress isotropy are much smaller and more difficult
to identify within the experimental scatter, although it appears that there is an increase
in �#}u# in the outer region of the flow that is opposite to the trend in the converging
region.

8. Spectra

The spectra presented here were measured by Saddoughi et al. (1991) in the same
apparatus and are included for completeness. They illustrate some interesting trends
that have not, to the authors’ knowledge, been presented before in the open literature.
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Figure 30 shows the spectra for the streamwise component for the upstream parallel
flow (x¯®250 mm) compared with the spectra near the end of the converging section
(x¯ 790 mm). The Reynolds numbers at these two stations are significantly different.
The plots have been normalized so the area under the graphs is unity and the
wavenumber has been calculated from Taylor’s hypothesis using a convection velocity
equal to the local mean velocity at the point of interest. Throughout the layer there is
a significant shift of the energy to higher wavenumbers after convergence which seems
to affect all the scales similarly. It has already been noted that the Reynolds number
Rθ for these two stations is significantly different. In order to show that this shift is due
to convergence the data are compared to the zero pressure-gradient, two-dimensional
measurements of Perry & Li (1991) in figure 31. In figure 31(a) the spectrum of Perry
& Li (1991) at Rθ ¯ 11100 and η¯ 0±058 is compared with the spectrum at the
upstream reference station (zero pressure-gradient, parallel flow) for Rθ ¯ 4500 and
η¯ 0±051 and it is seen that despite the difference in Reynolds number the spectra are
very similar. In figure 31(b) the same spectrum of Perry & Li is compared to the station
near the end of convergence where the Reynolds number is similar (Rθ ¯ 13500 and
η¯ 0±051). Despite the similar Reynolds number there is still a definite shift toward
higher wavenumbers and it would seem that the shift is not due to Rθ effects but is a
consequence of convergence. It is interesting to note that Saddoughi & Joubert (1991)
observed a shift of energy toward lower wavenumbers for the diverging flow which is
opposite to the trend observed here. The reason for this shift is not yet known. It
should be noted that, since the streamwise wavenumber was calculated using Taylor’s
hypothesis, a shift of the spectra could simply indicate a change in the convection
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velocity from the value assumed which is the local mean velocity at the point of
interest.

9. Conclusions

The effects of lateral streamline convergence on boundary layers developing in a
zero pressure gradient have been presented. It has been shown that the local effect
of convergence (or divergence) can be characterized in terms of a single equilibrium
parameter β

D
. In the results presented this parameter increases rapidly with streamwise

distance which leads to large changes in the mean flow and turbulence quantities
whereas in the results of Saddoughi et al. 1991) for diverging flow of the same included
angle the parameter becomes approximately constant and the flow reaches a state of
apparent equilibrium. This supports the contention that β

D
is an equilibrium

parameter. The effects of positive β
D

in this experiment shows some similarities to the



28 N. R. Panchapakesan, T. B. Nickels, P. N. Joubert and A. J. Smits

0.4

k1 y

0

k 1
yφ

11
(k

1
y)

/u
2

0.2

10–3

0.3

0.1

0.4
k 1

yφ
11

(k
1
y)

/u
2

0

0.3

0.1

10–2 10–1 100 101 102 103

0.2

(a)

(b)

F 31. Premultiplied spectra. (a) [[[, data of Perry & Li (1991) Rθ ¯ 11100, y}δ¯ 0±058, ——,
upstream station present case Rθ ¯ 4500, y}δ¯ 0±051. (b) [[[, data of Perry & Li (1991) Rθ ¯ 11100,
y}δ¯ 0±058, –––, x¯ 790 mm present case Rθ ¯ 13500, y}δ¯ 0±051.

effects of positive β
x
in two-dimensional boundary layers (i.e. adverse pressure gradient

flows). This is probably due to the fact that they affect ¥V}¥y similarly.
In this experiment the increase of β

D
leads to a significant reduction of the skin

friction compared with a zero pressure-gradient layer without convergence and an
increase in the boundary-layer thickness. This is accompanied by an increase in the
Coles wake factor (Π ).

The results also show a significant reduction of the Reynolds stresses in the inner
region of the flow (0±1! η! 0±4) and an increase in the turbulent kinetic energy in the
outer part of the flow. It is shown that the principal effects leading to these changes are
an ‘ immediate’ reduction in both the generation of shear stress and the production of
kinetic energy and an increase in advection by the mean flow. The changes in turbulent
transport are opposite to those of the advection and appear to be a response of the
boundary layer in order to compensate for the changes in the other transport terms (i.e.
an attempt to restore equilibrium). In the present experiment β

D
is increasing rapidly

and the changes in turbulent transport are not sufficient to redistribute the energy and
shear stress which leads to significant changes in the shape of the Reynolds stress
profiles.

Recovery after convergence is shown to be characterized by an increased transport
from the region very close to the wall to the region where the stresses have been
depleted. This recovery is slow since it depends on the time-scale of the large eddies.
An important conclusion of this work is that changes in turbulence structure of a
boundary layer, due to convergence or divergence, depends strongly on the rate-of-
change of the equilibrium parameter, β

D
and the timescale of the large eddies in the

flow. It should also be noted that the concept of convergence as a ‘stabilizing’ influence
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must be revised since the stresses are redistributed rather than simply suppressed. In the
outer region of the flow where the Bradshaw parameter, B, is large the stresses actually
increase and they decrease near the wall where this parameter is small. This reflects the
fact that B is a local parameter and significant changes occur owing to non-local effects
such as advection and turbulent transport.

Spectral measurements show an apparent shift in energy to higher wavenumbers
although, at this stage, the reason for this shift is not known.
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